Indian Statistical Institute, Bangalore

B. Math. (hons.) Second Year, Second Semester

Ordinary Differential Equations
End Term Examination
Maximum marks: 100
Date : 24 April 2023
Time: 3 hours

Section A

Answer all the question, each question carries 10 marks.

1. Solve $y^{\prime}+P(x) y=Q(x) y^{n}$, for $n=0,1,2, \cdots$.
2. Using variation of parameters method find a particular solution of the equation $y^{\prime \prime}+y=f(x)$.
3. Solve $y^{\prime}=\left(1-x^{2}\right)^{-\frac{1}{2}}$ and use it to prove $\frac{\pi}{6}=\frac{1}{2}+\frac{1}{2} \frac{1}{3 \times 2^{3}}+\frac{1 \times 3}{2 \times 4} \frac{1}{5 \times 2^{5}}+\ldots$.
4. Solve $2 x^{2} y^{\prime \prime}+x(2 x+1) y^{\prime}-y=0$ by Frobenius method.

Section B

Answer any four questions from this section, each question carries 15 marks.
5. Let $p(x) \in C^{1}(\Omega)$ and $q_{1}(x), q_{2}(x) \in C(\Omega)$, where $\Omega=[a, b] \subset \mathbb{R}$. Further, assume $p(x)>0$ and $q_{2}(x)>q_{1}(x)$ on Ω. Let y_{1} and y_{2} be the real valued solutions of differential equations $\frac{d}{d x}\left[p(x) \frac{d y}{d x}\right]+q_{1}(x) y=0$ and $\frac{d}{d x}\left[p(x) \frac{d y}{d x}\right]+$ $q_{2}(x) y=0$, resepectively. Further, if x_{1} and x_{2} are consecutive zeros of y_{1} in Ω, then prove that y_{2} has at least one zero in (x_{1}, x_{2}).
6. Let us consider the following differential operator

$$
\mathbf{L}=\frac{d}{d x}\left(p(x) \frac{d}{d x}\right)+q(x)
$$

on the domain $\Omega=[a, b] \subset \mathbb{R}$, where $p \in C^{1}(\Omega), p>0$ and $q \in C(\Omega)$. Consider the following boundary value problems

$$
\begin{equation*}
\mathbf{L} y=r, \quad \text { with conditions } y(a)=\alpha, y(b)=\beta, \tag{0.1}
\end{equation*}
$$

where α, β are real, $r \in C(\Omega)$. Consider the homogenous counterpart of problem (0.1)

$$
\begin{equation*}
\mathbf{L} y=0, \quad \text { with conditions } y(a)=0, y(b)=0 . \tag{0.2}
\end{equation*}
$$

Then show that following alternatives hold:
(a) If (0.2) has only trivial solutions, then, there exists a unique solution of (0.1).
(b) If (0.2) has a non trivial solution, then, (0.1) has infinitely many solutions, provided that it has a solution.
7. Consider the following nonlinear differential system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=8 x-y^{2} \tag{0.3}\\
\frac{d y}{d t}=-6 y+6 x^{2}
\end{array}\right.
$$

Show that $(0,0)$ and $(2,4)$ are critical points of the system (0.3). Further, determine the type and stability of the critical point $(2,4)$.
8. Consider the following differential system

$$
\frac{d x}{d t}=a x\left(x^{2}+y^{2}\right)-x y^{3}, \quad \frac{d y}{d t}=a y\left(x^{2}+y^{2}\right)+x^{2} y^{2} .
$$

Using the Lyapunov method, check the stability of the zero solution when $a=$ $0, a>0$ and $a<0$.
9. State the Poincaré-Bendixson Theorem. Further, consider the following differential system

$$
\frac{d x}{d t}=y+x \frac{f(r)}{r}, \quad \frac{d y}{d t}=-x+y \frac{f(r)}{r}
$$

where $r=x^{2}+y^{2}$. Let $r_{0}<r_{1}<\ldots$ be the zeros of $f(r)$. Then, show that the above system has limit cycles corresponding to these zeros of $f(r)$.
10. Consider the problem

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y), \quad \text { with initial condition } y\left(x_{0}\right)=y_{0} \tag{0.4}
\end{equation*}
$$

where $x \in[a, b] \in \mathbb{R}$ and $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ is an analytic function. Given $\theta \in[0,1]$, find the order of the following numerical scheme for the solution to the problem (0.4)

$$
\begin{equation*}
y_{k+1}=y_{k}+h\left[\theta f\left(x_{k}, y_{k}\right)+(1-\theta) f\left(x_{k+1}, y_{k+1}\right)\right] \tag{0.5}
\end{equation*}
$$

where h is the step size. Further, show that for $\theta \neq \frac{1}{2}$, the numerical scheme (0.5) is convergent.

